Nullstellenverteilung zweier konvexgeometrischer Polynome. (Distribution of zeroes of two convexgeometrical polynomials.) (Q917928)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nullstellenverteilung zweier konvexgeometrischer Polynome. (Distribution of zeroes of two convexgeometrical polynomials.) |
scientific article; zbMATH DE number 4157397
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nullstellenverteilung zweier konvexgeometrischer Polynome. (Distribution of zeroes of two convexgeometrical polynomials.) |
scientific article; zbMATH DE number 4157397 |
Statements
Nullstellenverteilung zweier konvexgeometrischer Polynome. (Distribution of zeroes of two convexgeometrical polynomials.) (English)
0 references
1989
0 references
For a convex body K in \({\mathbb{R}}^ d\), let \(V_ i(K)\) denote its ith intrinsice volume, and for a convex lattice polytope P, let \(G(P):=card(P\cap {\mathbb{Z}}^ d)\). In analogy to the Steiner polynomial \(V_ n(K+\lambda B^ d)=\sum^{d}_{i=0}\kappa_ iV_{d- i}(K)\ell^ i\) (\(\lambda\geq 0\), \(B^ d=unit\) ball in \({\mathbb{R}}^ d\), \(\kappa_ i=V_ i(B^ i))\), which plays a role in the theory of convex bodies, the author investigates the polynomials \(W(\lambda K)=\sum^{d}_{i=0}V_ i(K)\lambda^ i\) and \(G(\lambda P)=\sum^{d}_{i=0}G_ i(P)\lambda^ i\). He is particularly interested in their zeroes in the complex plane and relations to geometric properties.
0 references
Steiner formula
0 references
quermassintegral
0 references
lattice point
0 references
convex body
0 references
intrinsice volume
0 references