Eine neue Funktionalgleichung zur Bestimmung elliptischer Integrale erster Gattung und ihrer Umkehrungen. (A new functional equation for the definition of elliptic integrals of the first kind and their inverses) (Q919154)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Eine neue Funktionalgleichung zur Bestimmung elliptischer Integrale erster Gattung und ihrer Umkehrungen. (A new functional equation for the definition of elliptic integrals of the first kind and their inverses) |
scientific article; zbMATH DE number 4159101
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Eine neue Funktionalgleichung zur Bestimmung elliptischer Integrale erster Gattung und ihrer Umkehrungen. (A new functional equation for the definition of elliptic integrals of the first kind and their inverses) |
scientific article; zbMATH DE number 4159101 |
Statements
Eine neue Funktionalgleichung zur Bestimmung elliptischer Integrale erster Gattung und ihrer Umkehrungen. (A new functional equation for the definition of elliptic integrals of the first kind and their inverses) (English)
0 references
1987
0 references
In order to calculate \[ F(x;m)=\int^{x}_{0}(1-t^ 2)^{-1/2}(1- mt^ 2)^{-1/2} dt \] in the left neighbourhood of 1, the author offers the functional equation \[ F(x;m)=K(m)-F((1-x^ 2)^{1/2}(1-mx^ 2)^{-1/2};m), \] where \[ K(m)=(\pi /2)\sum^{\infty}_{n=0}((2n)!)^ 2 2^{-4n}(n!)^{-4} m^ n. \] For negative m, the equation \[ F(x;m)=(1-m)^{-1/2}F((1-m)^{1/2}(1- mx^ 2)^{-1/2}x;m(m-1)^{-1}) \] is stated and used. A functional equation for the inverse function of F with respect to the first variable is also offered. Two numerical examples \((m=\) and \(m=-2)\) are calculated in detail.
0 references
generating functions
0 references
areas
0 references
limits
0 references
inverse function
0 references