On the Neumann problem for some linear hyperbolic systems of 2nd order with coefficients in Sobolev spaces (Q919194)

From MaRDI portal





scientific article; zbMATH DE number 4159255
Language Label Description Also known as
English
On the Neumann problem for some linear hyperbolic systems of 2nd order with coefficients in Sobolev spaces
scientific article; zbMATH DE number 4159255

    Statements

    On the Neumann problem for some linear hyperbolic systems of 2nd order with coefficients in Sobolev spaces (English)
    0 references
    0 references
    1989
    0 references
    The paper is concerned with unique existence of solutions to the following equations (N): \(\partial^ 2_ t\vec u-\partial_ i(A^{i0}\partial_ t\vec u+A^{ij}\partial_ j\vec u)=\vec f_{\Omega}\text{ in } (0,T)\times \Omega,\nu_ iA^{ij}\partial_ j\vec u+B^ j\partial_ j\vec u+B^ 0\partial_ t\vec u=\vec f_{\Gamma}\text{ on } (0,T)\times \Gamma,\vec u(0,x)=\vec u_ 0(x)\text{ and } \partial_ t\vec u(0,x)=\vec u_ 1(x)\text{ in } \Omega,\)where \(\vec u=^ t(u_ 1,...,u_ m)\) \((=\) m row vector), \(\Omega\) is a domain in \({\mathbb{R}}^ n\) with boundary \(\Gamma\) which is a \(C^{\infty}\) and compact hypersurface, \(\partial_ t=\partial /\partial t\), \(\partial_ j=\partial /\partial x\), t is a time variable, \(x=(x_ 1,...,x_ n)\in {\mathbb{R}}^ n\), \(\nu =(\nu_ 1,...,\nu_ n)\) is a unit outer normal to \(\Gamma\) and the summation convention is understood. The \(A^{i\ell}=A^{i\ell}(t,x)\) and \(B^{\ell}=B^{\ell}(t,x)\) are \(m\times m\) matrices of functions satisfying the following five assumptions: (A.1) \(A^{i\ell}=A_{\infty}^{i\ell}+A_ S^{i\ell}\) where \(A_{\infty}^{i\ell}\in {\mathcal B}^ K\) and \(A_ S^{i\ell}\in Y^{K-1,1}([0,T],\Omega)\) and \(B^{\ell}\in Y^{K- 1,1/2}([0,T],\Gamma)\), where \[ Y^{\ell +1,r}(J,G)=\{u\in X^{\ell,r}(J,G)| \quad \partial^ j_ tu\in L^{\infty}(J,H^{\ell +1+r-j}(G))\cap Lip(J,H^{\ell +r-j}(G))\text{ for } 0\leq j\leq \ell \}, \] \(X^{\ell,r}(J,G)=C^ 0(J,H^{\ell +r}(G))\cap...\cap C^{\ell}(J,H^ r(G))\), \(H^ s(G)\) is a usual Sobolev space of order s over G. (A.2) \({}^ tA^{i0}=A^{i0}\), \({}^ tA^{ij}=A^{ji}\), \({}^ tB^ 0=B^ 0\), \({}^ tB^ i+B^ i=0\) \((i,j=1,...,n).\) (A.3) There exist \(\delta_ 1,\delta_ 2>0\) such that \[ \int_{\Omega}A^{ij}\partial_ j\vec v\cdot \partial_ i\vec v dx+\int_{\Gamma}B^ j\partial_ j\vec v\cdot \vec v d\Gamma \geq \delta_ 1\| \vec v\|^ 2_ 1-\delta_ 2\| \vec v\|^ 2_ 0,\quad \vec v\in H^ 2(\Omega), \] where \(\| \|_ s\) is a norm of \(H^ s(\Omega).\) (A.4) \(\nu_ i(x)B^ i(t,x)=0\) on [0,T]\(\times \Gamma.\) (A.5) \((-\nu_ i(x)A^{i0}(t,x)+2B^ 0(t,x))\eta \cdot \eta \leq 0\) for \(\eta \in {\mathbb{R}}^ m\) on [0,T]\(\times \Gamma.\) Then, we have: Theorem. Let K be an integer \(>n/2+1\) and \(2\leq L\leq K\). If \(\vec u_ 0\in H^ L(\Omega)\), \(\vec u_ 1\in H^{L-1}(\Omega)\), \(\vec f_{\Omega}\in X^{L-2,0}([0,T),\Omega)\), \(\partial_ t^{L- 2}\vec f_{\Omega}\in Lip([0,T],L^ 2(\Omega))\), \(\vec f_{\Gamma}\in X^{L-2,1/2}([0,T],\Gamma)\), \(\partial_ t^{L-2}\vec f_{\Gamma}\in Lip([0,T],H^{1/2}(\Gamma))\) and the L-2th order compatibility condition is satisfied, then (N) admits a unique solution \(\vec u\in X^{L,0}([0,T],\Omega)\). Moreover, we get the suitable energy estimates. The purpose is to improve the local existence theorem for the quasilinear hyperbolic system with Neumann conditions to minimal Sobolev order.
    0 references
    hyperbolic system
    0 references
    Neumann conditions
    0 references
    Sobolev
    0 references

    Identifiers