Smoothing effect for nonlinear Schrödinger equations in exterior domains (Q919200)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Smoothing effect for nonlinear Schrödinger equations in exterior domains |
scientific article; zbMATH DE number 4159301
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Smoothing effect for nonlinear Schrödinger equations in exterior domains |
scientific article; zbMATH DE number 4159301 |
Statements
Smoothing effect for nonlinear Schrödinger equations in exterior domains (English)
0 references
1990
0 references
We consider the following nonlinear Schrödinger equations in exterior domains: \[ (*)\quad i\partial_ tu+\Delta u=| u|^ 2u,\quad (t,x)\in {\mathbb{R}}\times D, \] \[ u(0,x)=\phi (x),\quad x\in D,\quad u(t,x)=0\quad (or\quad \partial u/\partial \nu =0),\quad (t,x)\in {\mathbb{R}}\times \partial D, \] where \(D=\{x\in {\mathbb{R}}^ n\); \(| x| >R\}\), \(\partial D=\{x\in {\mathbb{R}}^ n\); \(| x| =R\}\), \(R>0\), and \(\nu\) denotes the outward normal unit vector at \(x\in \partial D\). In this paper we prove that the radially symmetric solutions of (*) have a smoothing property.
0 references
nonlinear Schrödinger equations
0 references
exterior domains
0 references
smoothing property
0 references
0 references
0 references
0 references
0.94806087
0 references
0.93373793
0 references
0.9332046
0 references
0.93167967
0 references
0.93161285
0 references
0.93157345
0 references
0.9312381
0 references