Smoothing effect for nonlinear Schrödinger equations in exterior domains (Q919200)

From MaRDI portal





scientific article; zbMATH DE number 4159301
Language Label Description Also known as
English
Smoothing effect for nonlinear Schrödinger equations in exterior domains
scientific article; zbMATH DE number 4159301

    Statements

    Smoothing effect for nonlinear Schrödinger equations in exterior domains (English)
    0 references
    0 references
    1990
    0 references
    We consider the following nonlinear Schrödinger equations in exterior domains: \[ (*)\quad i\partial_ tu+\Delta u=| u|^ 2u,\quad (t,x)\in {\mathbb{R}}\times D, \] \[ u(0,x)=\phi (x),\quad x\in D,\quad u(t,x)=0\quad (or\quad \partial u/\partial \nu =0),\quad (t,x)\in {\mathbb{R}}\times \partial D, \] where \(D=\{x\in {\mathbb{R}}^ n\); \(| x| >R\}\), \(\partial D=\{x\in {\mathbb{R}}^ n\); \(| x| =R\}\), \(R>0\), and \(\nu\) denotes the outward normal unit vector at \(x\in \partial D\). In this paper we prove that the radially symmetric solutions of (*) have a smoothing property.
    0 references
    nonlinear Schrödinger equations
    0 references
    exterior domains
    0 references
    smoothing property
    0 references

    Identifiers