2-Potenzen der Ordnung von Einheitengruppen unimodularer definiter \({\mathbb{Z}}\)-Gitter. (Two-part of the order of unit groups of unimodular definite \({\mathbb{Z}}\)-lattices) (Q919382)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: 2-Potenzen der Ordnung von Einheitengruppen unimodularer definiter \({\mathbb{Z}}\)-Gitter. (Two-part of the order of unit groups of unimodular definite \({\mathbb{Z}}\)-lattices) |
scientific article; zbMATH DE number 4160836
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | 2-Potenzen der Ordnung von Einheitengruppen unimodularer definiter \({\mathbb{Z}}\)-Gitter. (Two-part of the order of unit groups of unimodular definite \({\mathbb{Z}}\)-lattices) |
scientific article; zbMATH DE number 4160836 |
Statements
2-Potenzen der Ordnung von Einheitengruppen unimodularer definiter \({\mathbb{Z}}\)-Gitter. (Two-part of the order of unit groups of unimodular definite \({\mathbb{Z}}\)-lattices) (English)
0 references
1990
0 references
Let L be a unimodular positive definite n-dimensional \({\mathbb{Z}}\)-lattice with orthogonal group O(L). Let \(I_ n=\perp^{n}_{i=1}<1>\). It is proved that if the two-part of \(| O(L)|\) is greater or equal than the two-part of \(| O(I_ n)|\) then L \(\cong I_ n\). Further a similar theorem for even unimodular positive definite \({\mathbb{Z}}\)-lattices is proved.
0 references
unimodular positive definite n-dimensional \({\mathbb{Z}}\)-lattice
0 references