Automorphisms of semisimple real Lie algebras (Q919451)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Automorphisms of semisimple real Lie algebras |
scientific article; zbMATH DE number 4160977
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Automorphisms of semisimple real Lie algebras |
scientific article; zbMATH DE number 4160977 |
Statements
Automorphisms of semisimple real Lie algebras (English)
0 references
1989
0 references
Consider a simple complex Lie algebra \({\mathfrak g}^ c\) with real form \({\mathfrak g}\). Let \(Aut_ e{\mathfrak g}^ c\) be the group of all automorphisms of \({\mathfrak g}^ c\) generated by the elements of the form exp ad x with nilpotent ad x. Let \(Aut_ 0{\mathfrak g}\) be the inverse image of \(Aut_ e{\mathfrak g}^ c\) with respect to the map Aut \({\mathfrak g}\to Aut {\mathfrak g}^ c\), \(g\mapsto g\otimes 1\), and \(Aut_ 0({\mathfrak g},{\mathfrak h})\) be the subgroup of \(Aut_ 0{\mathfrak g}\) preserving the Cartan subalgebra \({\mathfrak h}\subset {\mathfrak g}\). The author deduces a necessary and sufficient condition for certain pairs of \(Aut_ 0({\mathfrak g},{\mathfrak h})\) to be conjugate.
0 references
quasi-inner automorphisms
0 references
conjugacy classes
0 references