Automorphisms of semisimple real Lie algebras (Q919451)

From MaRDI portal





scientific article; zbMATH DE number 4160977
Language Label Description Also known as
English
Automorphisms of semisimple real Lie algebras
scientific article; zbMATH DE number 4160977

    Statements

    Automorphisms of semisimple real Lie algebras (English)
    0 references
    0 references
    1989
    0 references
    Consider a simple complex Lie algebra \({\mathfrak g}^ c\) with real form \({\mathfrak g}\). Let \(Aut_ e{\mathfrak g}^ c\) be the group of all automorphisms of \({\mathfrak g}^ c\) generated by the elements of the form exp ad x with nilpotent ad x. Let \(Aut_ 0{\mathfrak g}\) be the inverse image of \(Aut_ e{\mathfrak g}^ c\) with respect to the map Aut \({\mathfrak g}\to Aut {\mathfrak g}^ c\), \(g\mapsto g\otimes 1\), and \(Aut_ 0({\mathfrak g},{\mathfrak h})\) be the subgroup of \(Aut_ 0{\mathfrak g}\) preserving the Cartan subalgebra \({\mathfrak h}\subset {\mathfrak g}\). The author deduces a necessary and sufficient condition for certain pairs of \(Aut_ 0({\mathfrak g},{\mathfrak h})\) to be conjugate.
    0 references
    quasi-inner automorphisms
    0 references
    conjugacy classes
    0 references
    0 references

    Identifiers