Convergence of the sum of reciprocal renewal times (Q919723)

From MaRDI portal





scientific article; zbMATH DE number 4161828
Language Label Description Also known as
English
Convergence of the sum of reciprocal renewal times
scientific article; zbMATH DE number 4161828

    Statements

    Convergence of the sum of reciprocal renewal times (English)
    0 references
    0 references
    1990
    0 references
    Assume \(\{X_ n\}_ 1^{\infty}\) are i.i.d. and strictly positive. Put \(S_ n=X_ 1+...+X_ n\) for the corresponding renewal points. Then \(\sum^{\infty}_{1}S_ n^{-1}\) converges a.s. iff \([1-E(\exp (- tT_ 1))]^{-1}\) is integrable in [0,1]. This result is useful in a consensus model [cf. \textit{J. E. Cohen}, \textit{J. Hajnal} and \textit{C. M. Newman}, Stochastic Processes Appl. 22, 315-322 (1986; Zbl 0604.60066)].
    0 references
    renewal theory
    0 references
    renewal points
    0 references
    0 references

    Identifiers