A remark on the Aleksandrov diameters of finite-dimensional sets (Q920348)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A remark on the Aleksandrov diameters of finite-dimensional sets |
scientific article; zbMATH DE number 4163518
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A remark on the Aleksandrov diameters of finite-dimensional sets |
scientific article; zbMATH DE number 4163518 |
Statements
A remark on the Aleksandrov diameters of finite-dimensional sets (English)
0 references
1989
0 references
Let L be a linear space, X, Y, Z three norms on L. If BX and BY stand for the unit balls of the normed spaces (L,X) and (L,Y) then the k- dimensional Alexandrov diameters satisfy the inequality \[ a_{k_ 1+k_ 2}(BX,Z)\leq a_{k_ 1}(BX,Y)a_{k_ 2}(BY,Z). \]
0 references
k-dimensional Alexandrov diameters
0 references