On the contraction property of energy forms on infinite-dimensional space (Q920357)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the contraction property of energy forms on infinite-dimensional space |
scientific article; zbMATH DE number 4163542
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the contraction property of energy forms on infinite-dimensional space |
scientific article; zbMATH DE number 4163542 |
Statements
On the contraction property of energy forms on infinite-dimensional space (English)
0 references
1990
0 references
Let \(\nu\) be a positive finite measure on the space \({\mathcal S}'({\mathbb{R}}^ d)\) of tempered distributions on \({\mathbb{R}}^ d\) corresponding to a positive generalized white noise functional [see e.g., \textit{Y. Yokoi}, Hiroshima Math. J. 20, No.1, 137-157 (1990)]. It is proved that closures of energy forms (\({\mathcal E},D({\mathcal E}))\) on \(L^ 2({\mathcal S}'({\mathbb{R}}^ d);\nu)\) of type \[ {\mathcal E}(u,v)=\int_{{\mathcal S}'({\mathbb{R}}^ d)}<\nabla u,\nabla v>_{L^ 2({\mathbb{R}}^ d)}d\nu,\quad u,v\in D({\mathcal E}), \] with D(\({\mathcal E})\) \(=\) cylindrical polynomials on \({\mathcal S}'({\mathbb{R}}^ d)\), have the contraction or Dirichlet property. Here \(L^ 2({\mathbb{R}}^ d)\) (\(\subset {\mathcal S}'({\mathbb{R}}^ d))\) is the usual space of Lebesgue square integrable functions on \({\mathbb{R}}^ d\). For \(u\in D({\mathcal E})\), \(z\in {\mathcal S}'({\mathbb{R}}^ d)\), \(\nabla u(z)\) is defined as the unique element in \(L^ 2({\mathbb{R}}^ d)\) representing the continuous linear functional \(h\mapsto (d/ds)u(z+sh)_{| s=0}\), \(h\in L^ 2({\mathbb{R}}^ d)\). Subsequently, some consequences are discussed.
0 references
positive generalized white noise functional
0 references
energy forms
0 references
cylindrical polynomials
0 references
Dirichlet property
0 references
0 references
0 references
0 references
0.8594028
0 references
0.8492901
0 references
0.8490629
0 references
0.8481404
0 references
0 references