Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth) (Q921442)

From MaRDI portal





scientific article; zbMATH DE number 4165675
Language Label Description Also known as
English
Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth)
scientific article; zbMATH DE number 4165675

    Statements

    Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth) (English)
    0 references
    1987
    0 references
    The paper starts with a discussion of weights \(\omega\) for which \({\mathcal F}^{-1}(L^ 2_{\omega}({\mathbb{R}}^ n))\) is a Banach algebra under pointwise multiplication. For \(\omega\) of polynomial type, these are the well-known \(L^ 2\)-Sobolev spaces, but the main interest here is on radial and non-quasianalytic weights (such as the so-called Gevrey weights \(x\mapsto \exp (| x|^{\alpha})\), for \(0\leq \alpha <1)\), the difficulty being the fact that these spaces are not dilation- invariant. As applications of the basic results (e.g., equivalent norms) the author presents results on traces (over lower-dimensional subspaces), and characterizations of multiplier algebras, as well as a characterization of operating functions on these Banach algebras.
    0 references
    L\({}^ 2\)-Sobolev spaces
    0 references
    Gevrey weights
    0 references
    traces
    0 references
    multiplier algebras
    0 references
    characterization of operating functions
    0 references
    Banach algebras
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references