Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth) (Q921442)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth) |
scientific article; zbMATH DE number 4165675
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth) |
scientific article; zbMATH DE number 4165675 |
Statements
Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth) (English)
0 references
1987
0 references
The paper starts with a discussion of weights \(\omega\) for which \({\mathcal F}^{-1}(L^ 2_{\omega}({\mathbb{R}}^ n))\) is a Banach algebra under pointwise multiplication. For \(\omega\) of polynomial type, these are the well-known \(L^ 2\)-Sobolev spaces, but the main interest here is on radial and non-quasianalytic weights (such as the so-called Gevrey weights \(x\mapsto \exp (| x|^{\alpha})\), for \(0\leq \alpha <1)\), the difficulty being the fact that these spaces are not dilation- invariant. As applications of the basic results (e.g., equivalent norms) the author presents results on traces (over lower-dimensional subspaces), and characterizations of multiplier algebras, as well as a characterization of operating functions on these Banach algebras.
0 references
L\({}^ 2\)-Sobolev spaces
0 references
Gevrey weights
0 references
traces
0 references
multiplier algebras
0 references
characterization of operating functions
0 references
Banach algebras
0 references