Groupoïde d'homotopie d'un feuilletage Riemannien et réalisation symplectique de certaines variétés de Poisson. (Homotopy groupoid of a Riemannian foliation and symplectic realization of certain Poisson manifolds) (Q921677)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Groupoïde d'homotopie d'un feuilletage Riemannien et réalisation symplectique de certaines variétés de Poisson. (Homotopy groupoid of a Riemannian foliation and symplectic realization of certain Poisson manifolds) |
scientific article; zbMATH DE number 4166101
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Groupoïde d'homotopie d'un feuilletage Riemannien et réalisation symplectique de certaines variétés de Poisson. (Homotopy groupoid of a Riemannian foliation and symplectic realization of certain Poisson manifolds) |
scientific article; zbMATH DE number 4166101 |
Statements
Groupoïde d'homotopie d'un feuilletage Riemannien et réalisation symplectique de certaines variétés de Poisson. (Homotopy groupoid of a Riemannian foliation and symplectic realization of certain Poisson manifolds) (English)
0 references
1989
0 references
The Hamiltonian vector fields on a Poisson manifold generate a foliation in the sense of Sussmann and Stefan. If it is of dimension 2 and Riemannian, then under some further assumptions the Poisson manifold is shown to admit a symplectic realization in the following sense: there is a symplectic Lie groupoid (so that the graph of the multiplication is a Lagrange submanifold) such that the given Poisson manifold is the space of units and the source and target mappings are Poisson morphisms. On the way to this result it is shown that the homotopy groupoid of a Riemannian foliation is locally trivial.
0 references
Poisson manifold
0 references
symplectic Lie groupoid
0 references
homotopy groupoid
0 references
Riemannian foliation
0 references