Torseurs pour les motifs et pour les représentations p-adiques potentiellement de type CM. (Torsors for motives and for p-adic representations potentially of CM type) (Q922605)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Torseurs pour les motifs et pour les représentations p-adiques potentiellement de type CM. (Torsors for motives and for p-adic representations potentially of CM type) |
scientific article; zbMATH DE number 4168835
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Torseurs pour les motifs et pour les représentations p-adiques potentiellement de type CM. (Torsors for motives and for p-adic representations potentially of CM type) |
scientific article; zbMATH DE number 4168835 |
Statements
Torseurs pour les motifs et pour les représentations p-adiques potentiellement de type CM. (Torsors for motives and for p-adic representations potentially of CM type) (English)
0 references
1990
0 references
The Betti cohomology fibre functor \(H_ B\) and the De Rham cohomology fibre functor \(H_{DR}\) on the category of abelian varieties over \({\mathbb{Q}}\) of CM-type are realizations of the motives over \({\mathbb{Q}}\) with absolute Hodge cycles. Let G be the tensor automorphism group of \(H_ B\) (the Taniyama group) and P the G-torsor of tensor isomorphisms \(H_{DR}\to H_ B\). One determines the cohomology class of P in \(H^ 1({\mathbb{Q}},G)\). A similar cohomology class is determined in a p-adic context, where now G is the group of tensor automorphisms of the fibre functor that associates to a p-adic representation of the Galois group of the algebraic p-adic numbers its representation space and P is the G- torsor of the tensor isomorphisms of P to a fibre functor involving Hodge-Tate modules. The connection of the two situations is indicated.
0 references
abelian varieties of CM-type
0 references
motives
0 references
absolute Hodge cycles
0 references
torsor
0 references