Global attractivity and oscillations in a periodic delay-logistic equation (Q923203)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global attractivity and oscillations in a periodic delay-logistic equation |
scientific article; zbMATH DE number 4169159
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global attractivity and oscillations in a periodic delay-logistic equation |
scientific article; zbMATH DE number 4169159 |
Statements
Global attractivity and oscillations in a periodic delay-logistic equation (English)
0 references
1990
0 references
The authors present two theorems for the delay-logistic equation \(\dot x(t)=r(t)x(t)[1-x(t-n\tau)/K(t)].\) One is about sufficient conditions for the global attractivity of a periodic solution when r and K are positive periodic functions of period \(\tau\) and the other about those for the oscillation of all solutions about K when K is \(\tau\)-periodic but r non- periodic. A similar problem when the time delay is not \(n\tau\) remains open.
0 references
delay-logistic equation
0 references
global attractivity
0 references
0 references
0 references
0.97283864
0 references
0.9679427
0 references
0.9586512
0 references
0.95805085
0 references
0 references