Classification des actions hamiltoniennes complètement intégrables de rang deux. (Classification of completely integrable Hamiltonian actions of rang 2.) (Q923450)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Classification des actions hamiltoniennes complètement intégrables de rang deux. (Classification of completely integrable Hamiltonian actions of rang 2.) |
scientific article; zbMATH DE number 4169709
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Classification des actions hamiltoniennes complètement intégrables de rang deux. (Classification of completely integrable Hamiltonian actions of rang 2.) |
scientific article; zbMATH DE number 4169709 |
Statements
Classification des actions hamiltoniennes complètement intégrables de rang deux. (Classification of completely integrable Hamiltonian actions of rang 2.) (English)
0 references
1990
0 references
According to the definition of \textit{A. S. \textit{Mishchenko}} and \textit{A. T. Fomenko} [Funkts. Anal. Prilozh. 12, No.2, 46-56 (1978; Zbl 0396.58003)] the action of a Lie group G is completely integrable if it is locally free in a point, at least, and if the dimension of the manifold is the sum of the dimension and the rank of G. This highly abstract paper presents the proof of the following theorem. Let G be a compact connected Lie group of rank two, and \(M_ 1\) and \(M_ 2\) two manifolds on which the action of G is completely integrable; assume that these manifolds have the same image by the moment map, and that their principal isotropy groups are the same, then there exists a symplectic G-equivariant isomorphism of one onto the other.
0 references
completely integrable Hamilton actions
0 references
symplectic manifold
0 references
moment map
0 references
0 references
0 references
0.8775848
0 references
0.8648639
0 references
0.86226785
0 references
0.85899955
0 references
0.8564993
0 references
0.8558241
0 references
0.8548854
0 references