Poisson kernel of a class of Gruschin type operators (Q923822)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Poisson kernel of a class of Gruschin type operators |
scientific article; zbMATH DE number 4171485
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Poisson kernel of a class of Gruschin type operators |
scientific article; zbMATH DE number 4171485 |
Statements
Poisson kernel of a class of Gruschin type operators (English)
0 references
1987
0 references
The authors consider the following linear partial differential operator with double characteristics \[ P=D^ 2_ y+D^ 2_{x_ 1}+Y^ 2D^ 2_{x_ 2}+\alpha (x,y)D_{x_ 1}+\beta (x,y)D_{x_ 2}+\gamma (x,y)D_ y+\delta (x,y) \] on \(\Omega =\{(x_ 1,x_ 2,y)\in R^ 3\); \(y>0\}.\) Here \(\alpha\),\(\beta\),\(\gamma\),\(\delta\in {\mathcal C}^{\infty}({\bar \Omega})\) and \(\beta\) satisfies the following \[ Im \beta (x,0)=0\Rightarrow | \beta (x,0)| <1.\quad \forall x\in {\mathbb{R}}^ 2. \] Under the above conditions the authors construct the Poisson operator K \({\mathcal E}'(\partial \Omega)\to {\mathcal D}'({\bar \Omega})\cap {\mathcal C}^{\infty}(\Omega)\) enjoying the following properties. (i) PK: \({\mathcal E}'(\partial \Omega)\to {\mathcal C}^{\infty}({\bar \Omega}),\) (ii) the operator trace \(_{\partial \Omega}(K)-Id\) is regularising.
0 references
Gruschin type operators
0 references
double characteristics
0 references
Poisson operator
0 references