A class of functions whose sublevel sets are absolute retracts (Q924280)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A class of functions whose sublevel sets are absolute retracts |
scientific article; zbMATH DE number 5275710
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A class of functions whose sublevel sets are absolute retracts |
scientific article; zbMATH DE number 5275710 |
Statements
A class of functions whose sublevel sets are absolute retracts (English)
0 references
15 May 2008
0 references
The main result is the following theorem: Let \(E\) be a real Banach space and let \(X\subset E\) be a closed and convex set. Moreover let \(\phi :X\to {\mathcal R}\) be a lower semicontinuous convex function such that \(\phi (x_0) = 0\) and \[ \alpha = \inf _{x_0\neq x \in X}\frac{\phi (x)}{| | x - x_0| | } > 0 \] for some \(x_0\in X\). If \(J:X\to {\mathcal R}\) is a Lipschitzian function with constant \(L< \alpha \) then each nonempty sublevel set of \(\phi + J\) is an absolute retract.
0 references
Lipschitzian multifunction
0 references
Absolute retracts
0 references
Sublevel set
0 references
0 references