Simple 3-designs of \(\mathrm{PSL}(2,2^n)\) with block size 6 (Q925000)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Simple 3-designs of \(\mathrm{PSL}(2,2^n)\) with block size 6 |
scientific article; zbMATH DE number 5280741
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Simple 3-designs of \(\mathrm{PSL}(2,2^n)\) with block size 6 |
scientific article; zbMATH DE number 5280741 |
Statements
Simple 3-designs of \(\mathrm{PSL}(2,2^n)\) with block size 6 (English)
0 references
29 May 2008
0 references
It is proved that a simple \(3\)-\((2^n+1,6,\lambda)\) design that admits PSL\((2,2^n)\) as an automorphism group exists if and only if (1) \(n \equiv 0 \pmod{4}\), \(\lambda \equiv 0 \pmod{20}\), and \(0 \leq \lambda \leq \binom{2^n-2}{3}-24\); (2) \(n \equiv 0 \pmod{4}\), \(\lambda \equiv 4 \pmod{20}\), and \(0 \leq \lambda \leq \binom{2^n-2}{3}\); or (3) \(n \not\equiv 0 \pmod{4}\), \(\lambda \equiv 0 \pmod{20}\), and \(0 \leq \lambda \leq \binom{2^n-2}{3}\).
0 references
3-design
0 references
linear fraction
0 references
projective special linear group
0 references
0.9424561
0 references
0.9366761
0 references
0.93149245
0 references
0.9063538
0 references