Existence of an elliptic system involving Pucci operator (Q926767)

From MaRDI portal





scientific article; zbMATH DE number 5277564
Language Label Description Also known as
English
Existence of an elliptic system involving Pucci operator
scientific article; zbMATH DE number 5277564

    Statements

    Existence of an elliptic system involving Pucci operator (English)
    0 references
    0 references
    0 references
    21 May 2008
    0 references
    We study the existence of solutions for the nonlinear elliptic system \[ \begin{alignedat}{2}2 -{\mathcal M}_{\lambda,\Lambda}^+(D^2u) &= f_1(x,u)+ h_1(u,v) \quad&&\text{in }\Omega,\\ -{\mathcal M}_{\lambda,\Lambda}^+(D^2v) &= f_2(x,v)+ h_2(u,v) \quad&&\text{in }\Omega,\\ u &> 0,\;v>0 \quad&&\text{in }\Omega,\\ u &= v=0 \quad&&\text{on }\partial\Omega \end{alignedat} \] where \(\Omega\) is a bounded domain, \(f_1\) is superlinear and \(f_2\) is sublinear at zero and infinity, \(h_1\) and \(h_2\) are perturbation terms. We show that the system has at least two semi-trivial solutions \((u,0)\), \((0,v)\) and a nontrivial solution \((u^*,v^*)\).
    0 references
    fixed point index
    0 references
    nonlinear elliptic system
    0 references
    Pucci operator
    0 references

    Identifiers