A characterization of permutation modules. (Q934061)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A characterization of permutation modules. |
scientific article; zbMATH DE number 5304622
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A characterization of permutation modules. |
scientific article; zbMATH DE number 5304622 |
Statements
A characterization of permutation modules. (English)
0 references
29 July 2008
0 references
Let \(k\) be a field of characteristic \(p>0\), let \(P\) be a finite \(p\)-group, and let \(V\) be a finite-dimensional module over the group algebra \(kP\). For a subgroup \(Q\) of \(P\), \(V^Q\) and \(V_Q\) denote the socle and head, respectively, of \(V\). Then \[ V[[Q]]:=V^Q/\Bigl(\sum_{S<Q}\text{Tr}^Q_S(V^Q)+\sum_{Q<T}V^T\Bigr) \] becomes a \(kN_P(Q)\)-module; here \(\text{Tr}^Q_S\colon V^S\to V^Q\) denotes the relative trace map. The author shows that \[ \dim V\leq\sum_Q|P:Q|\dim\bigl(V[[Q]]_{N_P(Q)}\bigr) \] where \(Q\) ranges over a transversal for the conjugacy classes of subgroups of \(P\). Moreover, equality holds if and only if \(V\) is a permutation module. His proof makes use of cohomological Mackey functors.
0 references
Mackey functors
0 references
Mackey algebras
0 references
permutation modules
0 references
group algebras
0 references