Laws of the single logarithm for delayed sums of random fields. II (Q936598)

From MaRDI portal





scientific article; zbMATH DE number 5313893
Language Label Description Also known as
English
Laws of the single logarithm for delayed sums of random fields. II
scientific article; zbMATH DE number 5313893

    Statements

    Laws of the single logarithm for delayed sums of random fields. II (English)
    0 references
    0 references
    0 references
    19 August 2008
    0 references
    The main result is the following Theorem 2.2. Suppose that \(\{X_k: k\in\mathbb{Z}^d_+\}\) are i.i.d. random variables with mean 0 and finite variance \(\sigma^2\). Set \[ S_n:=\sum_{k\leq n}X_k,\;T_{n,n+n^\alpha}:=\sum_{n\leq k\leq n+n^\alpha}X_k, \] where \[ n^\alpha:=(n_1^{\alpha_1},\dots,n_d^{\alpha_d}),\quad 0< \alpha_1\leq\dots\leq\alpha_d<1, \] and set \(p:=\max\{k:\alpha_k= \alpha_1\}\). If \[ E(| X|^{2/\alpha_1} (\log_+| X|)^{p-1-1/\alpha_1})<\infty,\tag{*} \] then \[ \limsup_{n\to\infty}\frac {T_{n,n+n^\alpha}}{\sqrt{2| n^\alpha |\log| n|}}= \sigma\sqrt{1-\alpha_1},\quad\text{where} \qquad| n^\alpha|: =n_1^{\alpha_1}\dots n_d^{\alpha_d}.\tag{**} \] Conversely, if \[ P\left(\limsup_{n\to\infty}\frac {| T_{n,n+n^\alpha}|}{\sqrt{| n^\alpha|\log| n |}}< \infty\right)>0, \] then (*) holds, \(EX=0\), and (**) holds with \(\sigma^2= \text{Var}\,X\). We note that in the special case \(\alpha_1= \dots= \alpha_d\), Theorem 2.2. was proven by the present authors in the first part [Bernoulli 14, 249--276 (2008; doi:10.3150/07-BEJ103)].
    0 references
    delayed sums
    0 references
    law of the iterated logarithm
    0 references
    law of the single logarithm
    0 references
    multidimensional indices
    0 references
    random fields
    0 references
    sums of i.i.d. random variables
    0 references
    window
    0 references

    Identifiers