Free Łukasiewicz implication algebras (Q937211)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Free Łukasiewicz implication algebras |
scientific article; zbMATH DE number 5314398
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Free Łukasiewicz implication algebras |
scientific article; zbMATH DE number 5314398 |
Statements
Free Łukasiewicz implication algebras (English)
0 references
20 August 2008
0 references
A Łukasiewicz implication algebra is an algebra \(A=(A,\rightarrow ,1)\) of type \((2,0)\) that satisfies the equations: \(1\rightarrow x\thickapprox x;(x\rightarrow y)\rightarrow y\thickapprox (y\rightarrow x)\rightarrow x;(x\rightarrow y)\rightarrow ((y\rightarrow z)\rightarrow (x\rightarrow z))\thickapprox 1;(x\rightarrow y)\rightarrow (y\rightarrow x)\thickapprox y\rightarrow x\) (these algebras are the \(\{\rightarrow ,1\}\)-subreducts of MV-algebras and are the algebraic counterpart of Super-Łukasiewicz implicational logics). The scope of this paper is to give a description of free Łukasiewicz implication algebra in the context of McNaughton functions. More precisely, the author shows that the \(| X| \)-free Łukasiewicz implication algebra is isomorphic to \(\bigcup [x_{\theta }),x\in X,\) for a certain congruence \(\theta \) over the \(| X| \)-free MV-algebra. As corollary the author describes the free algebras in all subvarieties of Łukasiewicz implication algebras.
0 references
Łukasiewicz implication algebras
0 references
free algebras
0 references
MV-algebras
0 references
Wajsberg algebras
0 references
McNaughton functions
0 references
0.94887733
0 references
0.9037098
0 references
0.8907436
0 references
0.89071333
0 references
0 references
0 references