Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View history
Purge
English
Log in
DLMF:29.8.E7
(Q9403)
From MaRDI portal
Jump to:
navigation
,
search
No description defined
Language
Label
Description
Also known as
English
DLMF:29.8.E7
No description defined
Statements
Digital Library of Mathematical Functions ID
29.8.E7
0 references
DLMF defining formula
πΈπ
Ξ½
2
β’
m
+
1
β‘
(
z
1
,
k
2
)
β’
w
2
β’
(
K
β‘
)
+
w
2
β’
(
-
K
β‘
)
w
2
β’
(
0
)
=
-
k
2
β’
sn
β‘
(
z
1
,
k
)
β’
β«
-
K
β‘
K
β‘
sn
β‘
(
z
,
k
)
β’
d
π―
Ξ½
β‘
(
y
)
d
y
β’
πΈπ
Ξ½
2
β’
m
+
1
β‘
(
z
,
k
2
)
β’
d
z
,
Lame-Ec
2
π
1
π
subscript
π§
1
superscript
π
2
subscript
π€
2
complete-elliptic-integral-first-kind-K
π
subscript
π€
2
complete-elliptic-integral-first-kind-K
π
subscript
π€
2
0
superscript
π
2
Jacobi-elliptic-sn
subscript
π§
1
π
superscript
subscript
complete-elliptic-integral-first-kind-K
π
complete-elliptic-integral-first-kind-K
π
Jacobi-elliptic-sn
π§
π
derivative
shorthand-Ferrers-Legendre-P-first-kind
π
π¦
π¦
Lame-Ec
2
π
1
π
π§
superscript
π
2
π§
{\displaystyle{\displaystyle\mathit{Ec}^{2m+1}_{\nu}\left(z_{1},k^{2}\right)% \frac{w_{2}(K)+w_{2}(-K)}{w_{2}(0)}=-k^{2}\operatorname{sn}\left(z_{1},k\right% )\int_{-K}^{K}\operatorname{sn}\left(z,k\right)\frac{\mathrm{d}\mathsf{P}_{\nu% }\left(y\right)}{\mathrm{d}y}\mathit{Ec}^{2m+1}_{\nu}\left(z,k^{2}\right)% \mathrm{d}z,}}
0 references
Symbols used
Jacobian elliptic function
DLMF defining formula
sn
β‘
(
z
,
k
)
Jacobi-elliptic-sn
π§
π
{\displaystyle{\displaystyle\operatorname{sn}\left(\NVar{z},\NVar{k}\right)}}
xml-id
C22.S2.E4.m2aadec
0 references
Q12365
DLMF defining formula
πΈπ
Ξ½
m
β‘
(
z
,
k
2
)
Lame-Ec
π
π
π§
superscript
π
2
{\displaystyle{\displaystyle\mathit{Ec}^{\NVar{m}}_{\NVar{\nu}}\left(\NVar{z},% \NVar{k^{2}}\right)}}
xml-id
C29.S3.SS4.p1.m5aadec
0 references
Legendreβs complete elliptic integral of the first kind
DLMF defining formula
K
β‘
(
k
)
complete-elliptic-integral-first-kind-K
π
{\displaystyle{\displaystyle K\left(\NVar{k}\right)}}
xml-id
C19.S2.E8.m1acdec
0 references
derivative of $$f$$ with respect to $$x$$
DLMF defining formula
d
f
d
x
derivative
π
π₯
{\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}
xml-id
C1.S4.E4.m2aadec
0 references
differential of x
DLMF defining formula
d
x
π₯
{\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
xml-id
C1.S4.SS4.m1abdec
0 references
integral
DLMF defining formula
β«
{\displaystyle{\displaystyle\int}}
xml-id
C1.S4.SS4.m3abdec
0 references
Q11566
DLMF defining formula
π―
Ξ½
β‘
(
x
)
=
π―
Ξ½
0
β‘
(
x
)
shorthand-Ferrers-Legendre-P-first-kind
π
π₯
Ferrers-Legendre-P-first-kind
0
π
π₯
{\displaystyle{\displaystyle\mathsf{P}_{\NVar{\nu}}\left(\NVar{x}\right)=% \mathsf{P}^{0}_{\nu}\left(x\right)}}
xml-id
C14.S2.SS2.p2.m2abdec
0 references
nonnegative integer
DLMF defining formula
m
π
{\displaystyle{\displaystyle m}}
xml-id
C29.S1.XMD1.m1adec
0 references
real variable
DLMF defining formula
y
π¦
{\displaystyle{\displaystyle y}}
xml-id
C29.S1.XMD5.m1bdec
0 references
complex variable
DLMF defining formula
z
π§
{\displaystyle{\displaystyle z}}
xml-id
C29.S1.XMD6.m1edec
0 references
real parameter
DLMF defining formula
k
π
{\displaystyle{\displaystyle k}}
xml-id
C29.S1.XMD8.m1edec
0 references
real parameter
DLMF defining formula
Ξ½
π
{\displaystyle{\displaystyle\nu}}
xml-id
C29.S1.XMD9.m1bdec
0 references
solution
DLMF defining formula
w
β’
(
z
)
π€
π§
{\displaystyle{\displaystyle w(z)}}
xml-id
C29.S8.XMD1.m1ddec
0 references
instance of
Digital Library of Mathematical Functions Formula
0 references
MaRDI profile type
MaRDI formula profile
0 references
Sitelinks
Mathematics
(1 entry)
mardi
Formula:9403
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
Concept URI