The Hilbert transform and Hermite functions: a real variable proof of the \(L^2\)-isometry (Q944353)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Hilbert transform and Hermite functions: a real variable proof of the \(L^2\)-isometry |
scientific article; zbMATH DE number 5344336
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Hilbert transform and Hermite functions: a real variable proof of the \(L^2\)-isometry |
scientific article; zbMATH DE number 5344336 |
Statements
The Hilbert transform and Hermite functions: a real variable proof of the \(L^2\)-isometry (English)
0 references
16 September 2008
0 references
The Hilbert transform of a function \(f\) defined on the real line is given by \[ Hf(x)=p.v.\frac1{\pi}\int_R\frac{f(x-t)}t \,dt:=\lim_{\varepsilon\rightarrow 0} \frac1{\pi}\int_{| t| >\varepsilon}\frac{f(x-t)}t \,dt. \] The author provides a proof of the fact that the Hilbert transform can be extended as an isometry to \(L^2\) and obtains this by real variable methods using the Hermite functions.
0 references
Hilbert transform
0 references
Hermite functions
0 references
isometry
0 references
0 references
0.95112467
0 references
0.91556776
0 references
0.8844971
0 references
0 references
0 references
0.8693795
0 references
0.86750823
0 references
0.86737347
0 references
0.8637223
0 references