Martingale characterization of Pólya processes and sequences (Q946016)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Martingale characterization of Pólya processes and sequences |
scientific article; zbMATH DE number 5345541
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Martingale characterization of Pólya processes and sequences |
scientific article; zbMATH DE number 5345541 |
Statements
Martingale characterization of Pólya processes and sequences (English)
0 references
22 September 2008
0 references
The author proves that a mixed Poisson process \(\xi=(\xi_t)_{t\geq0}\) is a Pólya process if and only if there exists a non-degenerate linear transformation \(\xi_t\mapsto\eta_t=a(t)\xi_t+b(t)\) such that \(\eta=(\eta_t)_{t\geq0}\) is a martingale. This martingale characterization provides an optimal forecast for the value of the random variable \(\xi_T\). An analogous result is proved for Pólya sequences.
0 references
Pólya processes
0 references
Pólya sequences
0 references
martingales
0 references
Poisson processes
0 references
0 references
0.9446624
0 references
0.90664715
0 references
0.90027785
0 references
0.8961377
0 references
0.8871833
0 references
0.8775341
0 references
0.87665474
0 references