Synchronization in complex dynamical networks with nonsymmetric coupling (Q947764)

From MaRDI portal





scientific article; zbMATH DE number 5349262
Language Label Description Also known as
English
Synchronization in complex dynamical networks with nonsymmetric coupling
scientific article; zbMATH DE number 5349262

    Statements

    Synchronization in complex dynamical networks with nonsymmetric coupling (English)
    0 references
    0 references
    0 references
    0 references
    7 October 2008
    0 references
    Subject of the paper are networks of coupled systems of the form \[ x_i'(t)=f(x_i(t))+\sum_{j=1}^N g_{ij}Ax_j(t),\quad i=1,\dots,N, \] where \(x_i(t)\in\mathbb{R}^n\) is the state variable of one node of the network, \(G=(g_{ij})\) is the coupling matrix. The authors extend the master stability method [\textit{L. Pecora, T. Carroll, G. Johnson, D. Mar}, and \textit{J. Heagy}, Chaos 7, 520--543 (1997; Zbl 0933.37030)] to obtain criteria for global synchronization, i.e. global stability of the invariant subspace \(\{ (x_1,\dots,x_N)|\;x_1=x_2=\cdots=x_N \}\). Using the technique of \textit{T. Nishikawa} and \textit{A. E. Motter} [Physica D 224, No. 1--2, 77--89 (2006; Zbl 1117.34048)], the authors include also the case, when the coupling matrix is nondiagonalizable.
    0 references
    0 references
    complex networks
    0 references
    global synchronization
    0 references
    exponential stability
    0 references
    Jordan canonical transformation
    0 references
    master stability function
    0 references
    nondiagonalizable coupling
    0 references

    Identifiers