Rigidité topologique sous l'hypothèse \flqq entropie majorée\frqq\ et applications (Q951967)

From MaRDI portal





scientific article; zbMATH DE number 5361853
Language Label Description Also known as
English
Rigidité topologique sous l'hypothèse \flqq entropie majorée\frqq\ et applications
scientific article; zbMATH DE number 5361853

    Statements

    Rigidité topologique sous l'hypothèse \flqq entropie majorée\frqq\ et applications (English)
    0 references
    5 November 2008
    0 references
    Summary: We study some families of compact length spaces whose entropy is bounded from above. We prove that these families are complete w.r.t. the Gromov-Hausdorff distance and we give an explicit constant \(\varepsilon _{0} > 0\) such that, on balls of radius \(\epsilon _{0}\) with respect to the Gromov-Hausdorff distance, the fundamental group is constant, the universal covers are close for the equivariant Gromov-Hausdorff distance, the length spectrum is continuous and the entropy is Lipschitz. If we consider now some subsets of manifolds, we show moreover that the volume is semi-continuous from below and that the integral of the Ricci curvature is bounded from below.
    0 references
    espaces métriques
    0 references
    entropie volumique
    0 references
    rigidité topologique
    0 references
    distance de Gromov-Hausdorff
    0 references
    précompacité
    0 references
    spectre des longueurs
    0 references
    revêtements
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references