The existence of countably many positive solutions for nonlinear singular \(m\)-point boundary value problems on the half-line (Q955044)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The existence of countably many positive solutions for nonlinear singular \(m\)-point boundary value problems on the half-line |
scientific article; zbMATH DE number 5368365
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The existence of countably many positive solutions for nonlinear singular \(m\)-point boundary value problems on the half-line |
scientific article; zbMATH DE number 5368365 |
Statements
The existence of countably many positive solutions for nonlinear singular \(m\)-point boundary value problems on the half-line (English)
0 references
18 November 2008
0 references
The authors study the existence of countably many positive solutions of nonlinear boundary value problems with \(p\)-Laplace operator on the half-line. The main tool used for the proof is the fixed point index theory and a new fixed point theorem in cones.
0 references
positive solutions
0 references
\(p\)-Laplace operator
0 references
fixed point index
0 references
cones
0 references
0 references
0 references
0 references
0 references
0.97994584
0 references
0.96028864
0 references
0.95092386
0 references
0.94998795
0 references
0.9480742
0 references
0.94375026
0 references
0.9407571
0 references
0.9372767
0 references