A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces (Q960548)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces |
scientific article; zbMATH DE number 5480711
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces |
scientific article; zbMATH DE number 5480711 |
Statements
A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces (English)
0 references
22 December 2008
0 references
Let \(\dot{F}^s_{pq}(\mathbb R^n)\) with \(s \in \mathbb R\), \(0<p,q\leq\infty\) be the homogeneous Triebel--Lizorkin spaces in \(\mathbb R^n\). Let \(0< \alpha <1\), \(0<p\leq \infty\), \( 1\leq q \leq \infty\). Then the \(Q\)-spaces \(Q^{\alpha,q}_p (\mathbb R^n)\) are defined via \[ \|f|Q^{\alpha,q}_p(\mathbb R^n)\|=\sup|I|^{\frac{1}{p}-\frac{1}{q}}\Big(\int_{I\times I}\frac{|f(x)-f(y)|^q}{|x-y|^{n+q\alpha}}\,dx\,dy\Big)^{1/q}, \] where the supremum is taken over all (dyadic) cubes \(I\) in \(\mathbb R^n\). The authors introduce spaces \(\dot{F}^{s,\tau}_{pq}(\mathbb R^n)\) which cover both types of spaces and study their properties such as embeddings. In addition, further classes of spaces are introduced based on Carleson measures and Hausdorff capacities (tent spaces). This gives the possibility to study dual spaces, preduals, and their relations to the spaces \(\dot{F}^{s,\tau}_{pq}(\mathbb R^n)\).
0 references
Triebel-Lizorkin spaces
0 references
\(Q\)-spaces
0 references
tent spaces
0 references
0 references
0 references
0 references