Calderón-Zygmund operators on product Hardy spaces (Q961509)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Calderón-Zygmund operators on product Hardy spaces |
scientific article; zbMATH DE number 5688818
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Calderón-Zygmund operators on product Hardy spaces |
scientific article; zbMATH DE number 5688818 |
Statements
Calderón-Zygmund operators on product Hardy spaces (English)
0 references
31 March 2010
0 references
The authors use the Calderón identity and Littlewood-Paley theory to show that a product Calderón-Zygmund operator introduced by Journé is bounded on product \(H^p(\mathbb{R}^n\times\mathbb{R}^m)\) for \(\max\{\frac{n}{n+\epsilon},\frac{m}{m+\epsilon}\}<p\leq 1\) if and only if \(T^*_1(1)=T_2^*(1)=0\) for some \(\epsilon>0\). Their results can be seen a further work inspired from \textit{R. Fefferman}'s work [Proc. Natl. Acad. Sci. U.S.A. 83, 840--843 (1986; Zbl 0602.42023)]. The technique in this paper shared the deep characteristic from previous work of Prof. Y. S. Han about Calderón identity.
0 references
Calderón-Zygmund operators
0 references
Journé's class
0 references
Littlewood-Paley function
0 references
product Hardy spaces
0 references