Free summands of syzygies of modules over local rings (Q964539)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Free summands of syzygies of modules over local rings |
scientific article; zbMATH DE number 5697062
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Free summands of syzygies of modules over local rings |
scientific article; zbMATH DE number 5697062 |
Statements
Free summands of syzygies of modules over local rings (English)
0 references
22 April 2010
0 references
The author gives the following criterion for a commutative, noetherian, local ring to be Cohen-Macaulay: Theorem 2.4. A local ring \((A, \mathfrak m, k)\) is Cohen--Macaulay if and only if for some \(i > 0\), \(\mathrm{Syz}_i (A/x)\) has a free summand for some system of parameters \(x\) that form part of a minimal set of generators for \(\mathfrak m\).
0 references
0 references
0.91310525
0 references
0.88791186
0 references
0.8857012
0 references
0.8855175
0 references
0.8818836
0 references
0.8803568
0 references