Total nonpositivity of nonsingular matrices (Q967509)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Total nonpositivity of nonsingular matrices |
scientific article; zbMATH DE number 5702833
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Total nonpositivity of nonsingular matrices |
scientific article; zbMATH DE number 5702833 |
Statements
Total nonpositivity of nonsingular matrices (English)
0 references
29 April 2010
0 references
The authors present new characterizations of nonsingular totally nonpositive matrices. These characterizations are described in terms of minors with consecutive initial rows or consecutive initial columns. The main result of this work establishes that if \(A=(a_{ij})\) is a nonsingular real matrix, of size \(n \times n\), \(n \geq 2\), the following statements are equivalent: (1) \(A\) is totally nonpositive. (2) For any \(k \in \{1,2,\dots,n-1 \}\), \[ \begin{aligned} &a_{11} \leq 0, \quad a_{nn} \leq 0, \quad a_{n1} < 0, \quad a_{1n} < 0, \\ &\det{A[\alpha | \{k+1,\dots,n \}]} \leq 0, \quad \forall \alpha \in Q_{n-k,n}, \\ &\det{A[\{k+1,\dots,n \} | \beta]} \leq 0, \quad \forall \beta \in Q_{n-k,n}, \\ &\det{A[\{k,\dots,n \}]} < 0. \end{aligned} \] (3) For any \(k \in \{1,2,\dots,n-1 \}\), \[ \begin{aligned} &a_{11} \leq 0, \quad a_{nn} \leq 0, \quad a_{n1} < 0, \quad a_{1n} < 0, \\ &\det{A[\alpha | \{1,\dots,k \}]} \leq 0, \qquad \forall \alpha \in Q_{k,n}, \\ &\det{A[\{1,\dots,k \} | \beta]} \leq 0, \qquad \forall \beta \in Q_{k,n}, \\ &\det{A[\{1,\dots,k+1 \}]} < 0, \end{aligned} \] where \(Q_{k,n}\) denotes the set of strictly increasing sequences of \(k\) natural numbers less than or equal to \(n\).
0 references
sign regular matrices
0 references
tridiagonal factorization
0 references
determinant inequality
0 references
nonsingular totally nonpositive matrices
0 references