\(L^p\)-multipliers for the Hilbert space valued functions on the Heisenberg group (Q967590)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^p\)-multipliers for the Hilbert space valued functions on the Heisenberg group |
scientific article; zbMATH DE number 5702944
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^p\)-multipliers for the Hilbert space valued functions on the Heisenberg group |
scientific article; zbMATH DE number 5702944 |
Statements
\(L^p\)-multipliers for the Hilbert space valued functions on the Heisenberg group (English)
0 references
30 April 2010
0 references
It is well-known that if \(m\) is an \(L^p\)-multiplier for the Fourier transform on \(\mathbb R^n\) \((1<p<\infty)\) then there exists a pseudomeasure \(\sigma\) such that \(T_mf=\sigma*f\). The authors discuss that similar results hold for the \(L^p\)-Fourier multipliers of \(\mathcal H\)-valued functions on the Heisenberg group, where \(\mathcal H\) is a separable Hilbert space.
0 references
multiplier
0 references
Fourier multiplier
0 references
Heisenberg group
0 references
Hilbert space valued function
0 references
unitary representation
0 references
0.9530763
0 references
0.91998184
0 references
0.9118471
0 references
0.9112946
0 references
0.9091135
0 references
0.90617436
0 references
0.90562713
0 references