Homoclinic solutions for a forced Liénard type system (Q968076)

From MaRDI portal





scientific article; zbMATH DE number 5703371
Language Label Description Also known as
English
Homoclinic solutions for a forced Liénard type system
scientific article; zbMATH DE number 5703371

    Statements

    Homoclinic solutions for a forced Liénard type system (English)
    0 references
    3 May 2010
    0 references
    The author investigates the existence of homoclinic solutions of the forced Liénard type system \[ \ddot{x}+F(\dot{x})+ g(x)=p(t), \] where \(F\) and \(g\) are continuous functions on \(\mathbb{R}\) and \(p\) is a bounded continuous function on \(\mathbb{R}\). Under the following hypotheses: {\parindent=9mm \begin{itemize} \item[(\(H_1\))] \(p\) is a nonzero bounded continuous function on \(\mathbb{R}\) such that \(p(-k)=p(k)\) for all \(k \in \mathbb{Z}\) and \(\|p\|_{L^2}:= \left(\int_{-\infty}^{+\infty}|p(\tau)|^2d\tau\right)<+\infty,\) and there exists a constant \(L>0\) such that \(|p(t)- p(t_0)|\leq L|t-t_0|\) for all \(t, t_0\in \mathbb{R}\), \item[(\(H_2\))] \(F \in C^1(\mathbb{R},\mathbb{R}), F(0) = 0, |F(y)|\rightarrow +\infty\) as \(|y|\rightarrow \infty\) and \(F'(y)>0\) for \(y\in \mathbb{R}\), \item[(\(H_3\))] \(g \in C^1(\mathbb{R},\mathbb{R}), g(0) = 0, |g(x)|\rightarrow +\infty\) as \(|x|\rightarrow\infty\) and \(g'(x) > 0\) for \(x \in \mathbb{R}\) \end{itemize}} the author proves that the above system has a nontrivial homoclinic solution \(x(t)\), which satisfies \((x(t), \dot{x}(t))\rightarrow (0,0)\) as \(t\rightarrow\pm\infty\).
    0 references
    0 references
    homoclinic
    0 references
    bounded solution
    0 references
    forced Lienard type system
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers