Sampling and recovery of multidimensional bandlimited functions via frames (Q968826)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Sampling and recovery of multidimensional bandlimited functions via frames
scientific article

    Statements

    Sampling and recovery of multidimensional bandlimited functions via frames (English)
    0 references
    0 references
    10 May 2010
    0 references
    Let \(\mathcal F\) and \({\mathcal F}^{-1}\) denote the \(d\)-dimensional \(L_2\) direct and inverse Fourier transforms. The author proves the following multidimensional oversampling theorem for bandlimited functions. Let \(E\) such that \(0\in E\subset \mathbb{R}^d\) be compact and for all \(\lambda>1\), \(E\subset\text{int}(\lambda E)\). Choose \(\{t_n\}_{n\in{\mathbb N}}\subset\mathbb{R}^d\) such that \(\{f_n\}_{n\in{\mathbb N}}\), defined by \(f_n(\cdot)=e^{i(\cdot,t_n)}\), is a frame for \(L_2(E)\) with frame operator \(S\). Let \(\lambda_0>1\) with \({\mathcal F}^{-1}(g):\mathbb{R}^d\rightarrow\mathbb{R}\), \({\mathcal F}^{-1}(g)\in C^\infty\) where \({\mathcal F}^{-1}(g)|_{E}=1\) and \({\mathcal F}^{-1}(g)|_{(\lambda_0 E)^c}=0\). If \(\lambda\geq\lambda_0\) and \(f\in PW_E\), that is, bandlimited, then \(f(t)=(1/\lambda^d)\sum_{k\in{\mathbb N}}\left[\sum_{n\in{\mathbb N}} B_{kn}f(t_n/\lambda)\right]g(t-t_k/\lambda)\), \(t\in\mathbb{R}^d\), where \(B_{kn}=<S^{-1}f_n,S^{-1}f_k>_E\). Convergence of the sum is in \(L_2(\mathbb{R}^d)\), hence also uniform. Further, the map \(B:\ell_2({\mathbb N})\rightarrow\ell_2({\mathbb N})\) defined by \((y_k)_{k\in\mathbb N}\rightarrow (\sum_{n\in\mathbb N} B_{kn}y)_{k\in\mathbb N}\) is bounded linear, and is an onto isomorphism if and only if \(\{f_n\}_{n\in\mathbb N}\) is a Riesz basis for \(L_2(E)\). A computationally manageable simplification of this theorem is given. A generalization of Kadec's 1/4 theorem to higher dimension is considered.
    0 references
    frames
    0 references
    sampling
    0 references
    Kadec
    0 references
    Levinson
    0 references
    Riesz basis
    0 references
    oversampling
    0 references

    Identifiers