Bounds of the error of Gauss-Turán-type quadratures. II. (Q969292)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bounds of the error of Gauss-Turán-type quadratures. II. |
scientific article; zbMATH DE number 5704974
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bounds of the error of Gauss-Turán-type quadratures. II. |
scientific article; zbMATH DE number 5704974 |
Statements
Bounds of the error of Gauss-Turán-type quadratures. II. (English)
0 references
6 May 2010
0 references
This paper is the continuation of the paper of \textit{G. V. Milovanović} and \textit{M. M. Spalević} [J. Comput. Appl. Math. 178, No. 1--2, 333--346 (2005; Zbl 1071.41028)] and is concerned with the remainder term in Gauss-Turán quadrature rule \[ \int^1_{-1} w(t) f(t)\,dt= \sum^n_{v=1} \sum^{2s}_{i=0} \lambda_{i,v}f^{(i)}(\tau_v) + R_{n,s}(f) \tag{1} \] with the weight functions \[ w_{n,\mu}(t) = (U_{n-1}(t)/n)^{2\mu+1}(1-t^2)^\mu, \] where \(\mu=l-1/2,\) \(l=1,2,\dots\) and \(U_n(\cos \Theta)=\frac{\sin(n+1)\Theta}{\sin \Theta} -\) is the Chebyshev polynomial of the second kind. An explicit representation of the remainder term in (1) on elliptic contours is obtained. Error bounds are found.
0 references
Gauss-Turán quadrature formula
0 references
error bound
0 references
remainder term for analytic functions
0 references
contour integral representation
0 references
0 references
0 references
0.9759976
0 references
0.9670029
0 references
0.9281298
0 references
0.9267007
0 references
0.9185121
0 references
0.9132705
0 references
0.91186166
0 references
0.91174203
0 references
0.9053978
0 references
0.9051086
0 references