Spacelike hypersurfaces in the Lorentz-Minkowski space satisfying \(L_rx=Rx+b\) (Q971473)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Spacelike hypersurfaces in the Lorentz-Minkowski space satisfying \(L_rx=Rx+b\) |
scientific article; zbMATH DE number 5707665
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spacelike hypersurfaces in the Lorentz-Minkowski space satisfying \(L_rx=Rx+b\) |
scientific article; zbMATH DE number 5707665 |
Statements
Spacelike hypersurfaces in the Lorentz-Minkowski space satisfying \(L_rx=Rx+b\) (English)
0 references
14 May 2010
0 references
The operator \(L_r\) in the title refers to the linearized mean curvature \(H_{r+1}\) of a hypersurface, \(R\) denotes a constant matrix and \(b\) is a constant vector. A paper by \textit{L. Alías} and \textit{N.Gürbüz} [Geom. Dedicata 121, 113--127 (2006; Zb1 1119.53004)] gives a classification of hypersurfaces of Euclidean space satisfying this equation. In the present paper this is carried over to spacelike hypersurfaces of Lorentz-Minkowski space \(\mathbb{L}^{n+1}\).
0 references
Laplace operator
0 references
totally umbilical
0 references
maximal hypersurface
0 references
isoparametric hypersurface
0 references
0.95937914
0 references
0 references
0.9542077
0 references
0.9483065
0 references
0.9338787
0 references
0.9274868
0 references