On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions (Q971518)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions |
scientific article; zbMATH DE number 5707739
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions |
scientific article; zbMATH DE number 5707739 |
Statements
On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions (English)
0 references
14 May 2010
0 references
The author introduces the concept of Kurzweil-Henstock, Kurzweil-Henstock-Dunford and Kurzweil-Henstock-Pettis integrable function. It is proved that, under additional assumptions, Kurzweil-Henstock-Pettis integrable functions are Kurzweil-Henstock integrable function. Further, the author proves that, under an additional assumption, for measurable functions with values in a Schur space all these three types of integrals coincide. As it is indicated in the paper, the function constructed by \textit{L. Di Piazza} and \textit{D. Preiss} [Ill. J. Math. 47, No. 4, 1177--1187 (2003; Zbl 1045.28006)], is an example of function which is Kurzweil-Henstock-Pettis integrable, but not Kurzweil-Henstock integrable.
0 references
Kurzweil-Henstock integral
0 references
measurability
0 references
Schur space
0 references