On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions (Q971518)

From MaRDI portal





scientific article; zbMATH DE number 5707739
Language Label Description Also known as
English
On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions
scientific article; zbMATH DE number 5707739

    Statements

    On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions (English)
    0 references
    0 references
    14 May 2010
    0 references
    The author introduces the concept of Kurzweil-Henstock, Kurzweil-Henstock-Dunford and Kurzweil-Henstock-Pettis integrable function. It is proved that, under additional assumptions, Kurzweil-Henstock-Pettis integrable functions are Kurzweil-Henstock integrable function. Further, the author proves that, under an additional assumption, for measurable functions with values in a Schur space all these three types of integrals coincide. As it is indicated in the paper, the function constructed by \textit{L. Di Piazza} and \textit{D. Preiss} [Ill. J. Math. 47, No. 4, 1177--1187 (2003; Zbl 1045.28006)], is an example of function which is Kurzweil-Henstock-Pettis integrable, but not Kurzweil-Henstock integrable.
    0 references
    Kurzweil-Henstock integral
    0 references
    measurability
    0 references
    Schur space
    0 references

    Identifiers