Extremal values of multiple gamma and sine functions (Q973929)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extremal values of multiple gamma and sine functions |
scientific article; zbMATH DE number 5712548
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extremal values of multiple gamma and sine functions |
scientific article; zbMATH DE number 5712548 |
Statements
Extremal values of multiple gamma and sine functions (English)
0 references
26 May 2010
0 references
Barnes's multiple gamma function \(\Gamma_{r}(x)\) is defined by \[ \Gamma_{r}(x)=\exp\Big(\frac{\partial}{\partial s}\zeta_{r}(s,\,x)\Big|_{s=0}\Big) \;\;\;(x>0) \] where \(\zeta_{r}(s,\,x)\) is the multiple Hurwitz zeta function defined as \[ \zeta_{r}(s,\,x)=\sum_{n_{1},\dots,n_{r}=0}^{\infty}\frac{1}{(n_{1}+\dots + n_{r}+x)^{s}}\;\;\;\;(\text{Re} (s)>r). \] The multiple sine function \(S_{r}(x)\) is defined by \[ S_{r}(x)=\Gamma_{r}(x)^{-1}\,\Gamma_{r}(r-x)^{(-1)^{r}}\;\;\;\;(0<x<r). \] The author studies the extremal values of the functions \(\Gamma_{r}(x)\) and \(S_{r}(x)\) in the fundamental intervals, shows the number and locations of the extremal points and also proves that all the local maximum and minimum values are greater and less than one, respectively.
0 references
multiple gamma function
0 references
multiple sine function
0 references
Stirling modular form
0 references
extremal values
0 references
0.88880754
0 references
0.8772652
0 references
0 references
0.8736498
0 references
0 references
0.8719349
0 references
0.8609084
0 references
0.86037904
0 references
0.8590544
0 references