The qualitative analysis of a class of planar Filippov systems (Q984097)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The qualitative analysis of a class of planar Filippov systems |
scientific article; zbMATH DE number 5736448
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The qualitative analysis of a class of planar Filippov systems |
scientific article; zbMATH DE number 5736448 |
Statements
The qualitative analysis of a class of planar Filippov systems (English)
0 references
13 July 2010
0 references
Consider the system \[ \dot{x}= f(x), \] where \(x=(x_{1},x_{2})^{t}\), \(c=(c_{1},c_{2})^{t}\in\mathbb{R}^{2} \) and \[ f(x)=\begin{cases} A_{+}x +c,&\text{if \(x_{1}>0\)},\\ A_{-}x -c,&\text{if \(x_{1}<0\)},\end{cases}\qquad A_{+}=\begin{pmatrix} 0&1\\ a&b \end{pmatrix},\qquad A_{-}=\begin{pmatrix} 0&1\\ A&B \end{pmatrix}. \] Here \(a,A,b,B,c_{1},c_{2}\) are parameters, \(a,A>0.\) For \(|((b+B)c_{1}+2c_{2})/(b-B)|> c_{1}\), a complete qualitative analysis is provided including the existence and uniqueness of the initial value problem and the existence and uniqueness of a stationary point.
0 references
Filippov system
0 references
homoclinic trajectory
0 references
heteroclinic cycle
0 references
closed trajectory
0 references
sliding motion solution
0 references
0 references
0 references