Minimal condition number for positive definite Hankel matrices using semidefinite programming (Q989049)

From MaRDI portal





scientific article; zbMATH DE number 5775692
Language Label Description Also known as
English
Minimal condition number for positive definite Hankel matrices using semidefinite programming
scientific article; zbMATH DE number 5775692

    Statements

    Minimal condition number for positive definite Hankel matrices using semidefinite programming (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    27 August 2010
    0 references
    A Hankel matrix is a square matrix having constant anti-diagonal elements. For \(h=(h_1,h_2,\dots,h_{2n-1})^T\in{\mathbb R}^{2n-1}\), denote the Hankel matrix \[ H(h):=\begin{bmatrix} h_1 &h_2 &\cdots &h_{n-1} &h_n\\ h_2 &h_3 &\cdots &h_n &h_{n+1}\\ \vdots &\vdots &\ddots &\vdots &\vdots\\ h_{n} &h_{n+1} &\cdots &h_{2n-2} &h_{2n-1} \end{bmatrix}. \] The paper gives a semidefinite programming approach to compute a positive definite real Hankel matrix \(\widehat H_n=H(h)\) that minimizes the condition number \(\kappa(\widehat H_n):=\lambda_{\max}(\widehat H_n)/\lambda_{\min}(\widehat H_n)\). The approach is guaranteed to find such an \(\widehat H_n\) within any desired tolerance. Some semidefinite programming solvers are used to compute \(\widehat H_n\) up to \(n=100\).
    0 references
    0 references
    minimum condition number
    0 references
    semi-definite programming
    0 references
    positive definite real Hankel matrix
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references