Weighted endpoint estimates for multilinear commutator of Marcinkiewicz operator (Q991557)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weighted endpoint estimates for multilinear commutator of Marcinkiewicz operator |
scientific article; zbMATH DE number 5780188
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weighted endpoint estimates for multilinear commutator of Marcinkiewicz operator |
scientific article; zbMATH DE number 5780188 |
Statements
Weighted endpoint estimates for multilinear commutator of Marcinkiewicz operator (English)
0 references
7 September 2010
0 references
Consider the multilinear commutator of the Marcinkiewicz operator defined by \[ \mu_\Omega^{\vec b}f(x):\bigg(\int_0^\infty |F_t^{\vec b}f(x)|^2 \,\frac{dt}{t^3}\bigg)^{1/2}, \] where \[ F_t^{\vec b}f(x) =\int_{|x-t|\leq t} \frac{\Omega(x-y)}{|x-y|^{n-1}}\prod_{j=1}^m \big(b_j(x)-b_j(y)\big) f(y)\,dy. \] Let \(w\in A_p\), \(p>1\), and \(\vec b=(b_1,\dots, b_m)\) with \(b_j\in BMO(\mathbb R^n)\) for \(j=1,\dots,m\). The author shows the following: \(\mu_\Omega^{\vec b}\) is bounded from \(L^\infty\) tp \(BMO(w)\); if for any \(Q=Q(0,R)\), \(R>1\), there is \(w(Q):=\int_Q w(x)dx \geq 1\), then, for \(t>\max\{p,s\}\) and \(\lambda \leq 0\), \[ \|\mu_\Omega^{\vec b}f\|_{CMO^{s,\lambda}(w)} \leq C \|f\|_{B^{t,\lambda}(w)}, \] where \[ \begin{aligned} \|f\|_{B^{t,\lambda}(w)}&:= \sup_{r\geq 1}\bigg(\frac 1{w(Q(0,r) )^{1+t\lambda}} \int_{Q(0,r)} |f(x)|^t w(x)\,dx \bigg)^{1/t}; \\ \|f\|_{CMO^{s,\lambda}(w)}&:= \sup_{r\geq 1}\bigg(\frac 1{w(Q(0,r))^{1+s\lambda}} \int_{Q(0,r)} \Big|f(x)-\Big(\frac 1{w(Q)}\int_Q f(y)w(y)dy\Big)\Big|^s w(x)\,dx \bigg)^{1/s}. \end{aligned} \]
0 references
Marcinkiewicz operator
0 references
multilinear commutator
0 references
\(BMO(\omega )\)
0 references
\(B^{s,\lambda }(\omega )\)
0 references
\(CMO^{s,\lambda}(\omega )\)
0 references