Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions (Q991727)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions |
scientific article; zbMATH DE number 5780339
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions |
scientific article; zbMATH DE number 5780339 |
Statements
Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions (English)
0 references
7 September 2010
0 references
Let: 1. \(\{\varphi_n^{\alpha}\}\) and \(\{\mathcal{L}_n^{\alpha}\}\) be the systems of Laguerre functions that are eigenvectors of the differential operators \[ L_\alpha=\frac{1}{2}\Big(-\frac{d^2}{dy^2}+y^2+ \frac{1}{y^2}\Big(\alpha^2-\frac{1}{4}\Big)\Big), \quad \mathcal{L}_\alpha=-\Big(x\frac{d^2}{dx^2}+\frac{d}{dx}- \Big(\frac{x}{4}+\frac{\alpha^2}{4x}\Big)\Big), \] respectively; 2. \(R_\alpha(\alpha>-1/2)\) and \(\mathcal{R}_\alpha(\alpha>0)\) be the Riesz transforms corresponding to \(\{\varphi_n^{\alpha}\}\) and \(\{\mathcal{L}_n^{\alpha}\}\) , respectively; 3. \(H_{\text{Riesz}}^1 (L_\alpha)=\{f\in L(0,\infty):\|R_\alpha f\|_{L^1}<\infty\}\) \((\alpha>-1/2)\) and \(H_{\text{Riesz}}^1(\mathcal{L}_\alpha)=\{f\in L(0,\infty):\|\mathcal{R}_\alpha f\|_{L^1}<\infty\}\) \((\alpha>0);\) 4. \(H_{\text{at}}^1(L_\alpha)\) and \(H_{\text{at}}^1(\mathcal{L}_\alpha)\) be the spaces of functions admitting \(H^1(L_\alpha)\)-atomic and \(H^1(\mathcal{L}_\alpha)\)-atomic decompositions, respectively. In the paper there are proved the following theorems. Theorem 1.1. If \(\alpha>-1/2\), then \(H_{\text{Riesz}}^1(L_\alpha)=H_{\text{at}}^1(L_\alpha)\). Moreover, there exists \(C>0\) such that \[ C^{-1}\|f\|_{H_{\text{at}}^1(L_\alpha)}\leq \|R_\alpha f\|_{L^1}+\|f\|_{L^1}\leq C\|f\|_{H_{\text{at}}^1(L_\alpha)}. \] Theorem 1.2. If \(\alpha>0\), then \(H_{\text{Riesz}}^1(\mathcal{L}_\alpha)=H_{\text{at}}^1(\mathcal{L}_\alpha)\). Moreover, there exists \(C>0\) such that \[ C^{-1}\|f\|_{H_{\text{at}}^1(\mathcal{L}_\alpha)}\leq \|\mathcal{R}_\alpha f\|_{L^1}+\|f\|_{L^1}\leq C\|f\|_{H_{\text{at}}^1(\mathcal{L}_\alpha)}. \] The analogous results for the Hardy type spaces \(H_{\text{max}}^1(L_\alpha)\) and \(H_{\text{max}}^1(\mathcal{L}_\alpha)\) defined by means of the appropriate maximal operator were obtained earlier by the second author [Constr. Approx. 27, No. 3, 269--287 (2008; Zbl 1152.42301)].
0 references
Hardy spaces
0 references
Laguerre system
0 references
Riesz transform
0 references