A non-standard Fourier expansion for the Drinfeld discriminant function (Q992018)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A non-standard Fourier expansion for the Drinfeld discriminant function |
scientific article; zbMATH DE number 5781192
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A non-standard Fourier expansion for the Drinfeld discriminant function |
scientific article; zbMATH DE number 5781192 |
Statements
A non-standard Fourier expansion for the Drinfeld discriminant function (English)
0 references
8 September 2010
0 references
Let \(A={\mathbb F}_q[T]\), \(K={\mathbb F}_q(T)\), \(K_\infty={\mathbb F}_q\left(\left(\frac 1T\right)\right)\), \(C\) the completed algebraic closure of \(K_\infty\). The Carlitz module determines a rank one \(A\)-module in \(C\) generated by an element \(\overline{\pi}\). Let \(t(z)=\frac{1}{\overline{\pi}} \sum_{a\in A}\frac{1}{z+a}\). For the Drinfeld discriminant function \(\Delta(z)\) the author proves that \[ \overline{\pi}^{1-q^2}\Delta(z)=-\sum_{\substack{ a\in A\\ a\,\text{monic}}} a^{q(q-1)}t(az)^{q-1}. \]
0 references
Drinfeld modular forms
0 references