Finiteness result for generalized local cohomology modules (Q993613)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Finiteness result for generalized local cohomology modules |
scientific article; zbMATH DE number 5788296
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Finiteness result for generalized local cohomology modules |
scientific article; zbMATH DE number 5788296 |
Statements
Finiteness result for generalized local cohomology modules (English)
0 references
20 September 2010
0 references
Let \(R\) be a Noetherian ring, let \(M\) and \(N\) be finitely generated \(R\)-modules and let \(\mathfrak{a}\) and \(\mathfrak{b}\) be two ideals of R. Let \(s\) be an integer such that \(\mathfrak{b}_{\mathfrak{p}}\subseteq \mathrm{Ann}H^i_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})\) for all \(i\leq s\) and all prime ideal \(\mathfrak{p}\) of \(R\). The author shows that the following statements hold: (1) If \(H^i_{\mathfrak{b}}(N) = 0\) for all \(i < s\), then \(H^i_{\mathfrak{ a}}(M,N)\) is finitely generated. (2) If \(s = 2\), then \(\mathfrak{b}\subseteq \mathrm{Ann}H^i_{\mathfrak{a}}(M,N)\). These statements generalize the corresponding results which are shown in [\textit{K. N. Raghavan}, Contemp. Math. 159, 329--331 (1994; Zbl 0818.13009)] and [\textit{M. Brodmann, C. Rotthaus} and \textit{R. Y. Sharp}, J. Pure Appl. Algebra 153, No. 3, 197--227 (2000; Zbl 0968.13010)] for standard local cohomology module.
0 references
generalized local cohomology
0 references