Relative spinor class fields: a counterexample (Q999106)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Relative spinor class fields: a counterexample |
scientific article; zbMATH DE number 5500890
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Relative spinor class fields: a counterexample |
scientific article; zbMATH DE number 5500890 |
Statements
Relative spinor class fields: a counterexample (English)
0 references
30 January 2009
0 references
In previous papers, the author proved the existence of a representation field for certain orders in central simple algebras \(A\) over an algebraic number field \(K\). In the paper under review, it is shown that for \((A:K)\geq 9\), a representation field exists for every order in \(A\) if and only if the spinor class field has exponent 2 over \(K\).
0 references
Spinor class fields
0 references
maximal orders
0 references
central simple algebras
0 references
0 references
0.8582258
0 references
0.84653217
0 references
0.84652495
0 references
0.84513104
0 references