On \((1 - u)\)-cyclic codes over \(\mathbb F_{p^k}+u\mathbb F_{p^k}\)
From MaRDI portal
Publication:1003563
DOI10.1016/j.aml.2007.07.035zbMath1160.14011OpenAlexW1511905769MaRDI QIDQ1003563
Maria Carmen V. Amarra, Fidel Ronquillo Nemenzo
Publication date: 4 March 2009
Published in: Applied Mathematics Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.aml.2007.07.035
Related Items (35)
Unnamed Item ⋮ On the $$(1+u^2+u^3)$$ -Constacyclic and Cyclic Codes Over the Finite Ring $$ {F}_2+u{F}_2+u^2{F}_2+u^3{F}_2+v{F}_2 $$ ⋮ Ranks of repeated-root constacyclic code ⋮ Type 2 constacyclic codes over \(\mathbb{F}_{2^m} [u \slash \langle u^3 \rangle\) of oddly even length] ⋮ A class of repeated-root constacyclic codes over \(\mathbb{F}_{p^m} [u / \langle u^e \rangle\) of type 2] ⋮ On the Gray images of some constacyclic codes over \(\mathbb F_p + u\mathbb F_p + u^2\mathbb F_p\) ⋮ The Gray image of a class of constacyclic codes over polynomial residue rings ⋮ An explicit expression for Euclidean self-dual cyclic codes over \(\mathbb{F}_{2^m} + u \mathbb{F}_{2^m}\) of length \(2^s\) ⋮ Complete classification of \((\delta + \alpha u^2)\)-constacyclic codes over \(\mathbb{F}_{2^m} [u/\langle u^4 \rangle\) of oddly even length] ⋮ An efficient method to construct self-dual cyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m} \) ⋮ On constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m} [ u , v \slash \langle u^2 , v^2 , u v - v u \rangle \)] ⋮ Unnamed Item ⋮ Galois LCD codes over rings ⋮ An explicit representation and enumeration for self-dual cyclic codes over \(\mathbb{F}_{2^m}+u\mathbb{F}_{2^m}\) of length \(2^s\) ⋮ Gray images of (1 − u)-constacyclic codes over the ring 𝔽pk + u𝔽pk + v𝔽pk + uv𝔽pk ⋮ MDS symbol-pair repeated-root constacylic codes of prime power lengths over \(\mathbb{F}_q+ u\mathbb{F}_q + u^2\mathbb{F}_q\) ⋮ Cyclic codes over \(\mathbb F_2[u/(u^4-1)\) and applications to DNA codes] ⋮ On some special codes over \(\mathbb F_p + u\mathbb F_p + u^2\mathbb F_p\) ⋮ On constacyclic codes over finite chain rings ⋮ \((1+\lambda u)\)-constacyclic codes over \(\mathbb F_{p}[u/\langle u^m\rangle\)] ⋮ A class of linear codes of length 2 over finite chain rings ⋮ The Gray images of \((1+u)\) constacyclic codes over \(\mathbb F_{2^m}[u/\langle u^k\rangle\)] ⋮ On (1 −u2)-cyclic and cyclic codes overIFp+uIFp+u2IFp ⋮ Complete classification of \((\delta +\alpha u^2)\)-constacyclic codes over \(\mathbb {F}_{3^m}[u/\langle u^4\rangle \) of length \(3n\)] ⋮ RT distance and weight distributions of Type 1 constacyclic codes of length 4ps over Fpm[u] ⋮ On some constacyclic codes over the ring \(\mathbb{F}_{p^m} [u \slash \langle u^4 \rangle\)] ⋮ Constacyclic codes of length \(np^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\) ⋮ The Gray image of constacyclic codes over the finite chain ring \(F_{p^m}[u/\langle u^k\rangle \)] ⋮ New \(\mathbb{Z}_4\) codes from constacyclic codes over a non-chain ring ⋮ Skew constacyclic codes over finite fields and finite chain rings ⋮ Unnamed Item ⋮ The dual code of any \((\delta + \alpha u^2)\)-constacyclic code over \(\mathbb{F}_{2^m} [u \slash \langle u^4 \rangle\) of oddly even length] ⋮ $(1-2u^2)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$ ⋮ \((1-uv)\)-constacyclic codes over \(\mathbb F_p+u\mathbb F_p+v\mathbb F_p+uv\mathbb F_p\) ⋮ Complete classification of \((\delta + \alpha u^2)\)-constacyclic codes of length \(p^k\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m} + u^2 \mathbb{F}_{p^m}\)
Cites Work
This page was built for publication: On \((1 - u)\)-cyclic codes over \(\mathbb F_{p^k}+u\mathbb F_{p^k}\)