Classification of Möbius isoparametric hypersurfaces in the unit six-sphere
From MaRDI portal
Publication:1004658
DOI10.2748/tmj/1232376164zbMath1165.53008OpenAlexW2037025190MaRDI QIDQ1004658
Publication date: 11 March 2009
Published in: Tôhoku Mathematical Journal. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2748/tmj/1232376164
Möbius formMöbius metricMöbius equivalenceMöbius second fundamental formMöbius isoparametric hypersurface
Related Items
On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues, On hypersurfaces with parallel Möbius form and constant para-Blaschke eigenvalues, A CLASSIFICATION OF HYPERSURFACES WITH PARALLEL PARA-BLASCHKE TENSOR IN Sm+1, On Möbius form and Möbius isoparametric hypersurfaces, Classification of the Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues, A note on Blaschke isoparametric hypersurfaces, Classification of Laguerre isoparametric hypersurfaces in R6
Cites Work
- Unnamed Item
- Compact Dupin hypersurfaces with three principal curvatures
- Dupin hypersurfaces in \({\mathbb{R}}^ 5\). I
- Immersed hypersurfaces in the unit sphere \(S^{m+1}\) with constant Blaschke eigenvalues
- Möbius isoparametric hypersurfaces with three distinct principal curvatures
- Dupin'sche Hyperflächen in \(E^ 4\). (Dupin hypersurfaces in \(E^ 4)\)
- Dupin hypersurfaces with three principal curvatures
- Moebius geometry of submanifolds in \(\mathbb{S}^n\)
- Möbius geometry of hypersurfaces with constant mean curvature and scalar curvature
- Möbius isotropic submanifolds in \(\mathbb{S}^n\)
- Möbius isoparametric hypersurfaces in \(S^{n+1}\) with two distinct principal curvatures
- Dupin hypersurfaces with four principal curvatures
- Classification of hypersurfaces with parallel Möbius second fundamental form in \(S^{n+1}\)
- Dupin hypersurfaces with four principal curvatures. II.
- Isoparametric hypersurfaces with four principal curvatures
- A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors
- Classification of Möbius isoparametric hypersurfaces in \({\mathbb S}^5\)
- Familles de surfaces isoparametriques dans les espaces à courbure constante
- Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques
- Dupin Hypersurfaces
- Classification of Möbius Isoparametric Hypersurfaces in 4
- A conformal differential invariant and the conformal rigidity of hypersurfaces
- A Moebius characterization of Veronese surfaces in \(S^n\)