Generating binary trees by Glivenko classes on Tamari lattices
From MaRDI portal
Publication:1007536
DOI10.1016/S0020-0190(02)00417-9zbMath1181.68318OpenAlexW2088934887MaRDI QIDQ1007536
Publication date: 23 March 2009
Published in: Information Processing Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0020-0190(02)00417-9
Related Items (6)
The pruning-grafting lattice of binary trees ⋮ An efficient algorithm for estimating rotation distance between two binary trees ⋮ The phagocyte lattice of Dyck words ⋮ Nonassociativity à la Kleene ⋮ Unnamed Item ⋮ Weak associativity and restricted rotation
Cites Work
- Unnamed Item
- Unnamed Item
- On the loopless generation of binary tree sequences
- Finite pseudocomplemented lattices and ``permutoedre
- Les treillis pseudocomplémentés finis. (The finite pseudocomplemented lattices)
- Primes, irreducibles and extremal lattices
- Two families of Newman lattices
- Möbius functions of lattices
- On generating \(k\)-ary trees in computer representation
- Loopless generation of Gray codes for \(k\)-ary trees
- An efficient upper bound of the rotation distance of binary trees
- A generalization of Rota's NBC theorem
- Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law
- An algorithm to compute the möbius function of the rotation lattice of binary trees
- Enumerating, Ranking and Unranking Binary Trees
- Short notes: Some Properties of the Rotation Lattice of Binary Trees
- On Rotations and the Generation of Binary Trees
- Shellable nonpure complexes and posets. II
- A Survey of Combinatorial Gray Codes
- A Loopless Gray-Code Algorithm for Listing k-ary Trees
- Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative
- Monoïdes préordonnés et chaînes de Malcev
- Pseudocomplemented semilattices, Boolean algebras, and compatible products
This page was built for publication: Generating binary trees by Glivenko classes on Tamari lattices