Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces
From MaRDI portal
Publication:1009385
DOI10.1155/2008/425256zbMath1180.30052OpenAlexW2154104798WikidataQ59216546 ScholiaQ59216546MaRDI QIDQ1009385
Ricardo Abreu-Blaya, Fred Brackx, Juan Bory-Reyes, Bram De Knock, Hennie De Schepper, Dixan Peña Peña, Fransiscus Sommen
Publication date: 31 March 2009
Published in: Boundary Value Problems (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/45427
Related Items
A representation of sl(2;C) on clifford algebra of even dimension ⋮ On fundamental solutions in Clifford analysis ⋮ Duality for Hermitean systems in \(\mathbb R^{2n}\) ⋮ Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford analysis ⋮ Hölder norm estimate for a Hilbert transform in Hermitean Clifford analysis ⋮ Riemann boundary value problem for H-2-monogenic function in Hermitian Clifford analysis ⋮ Dirichlet type problems in Hermitian Clifford analysis ⋮ Hermitean Téodorescu transform decomposition of continuous matrix functions on fractal hypersurfaces ⋮ A Hermitian Cauchy formula on a domain with fractal boundary ⋮ On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis ⋮ Boundary value problems associated to a Hermitian Helmholtz equation
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cauchy transform and rectifiability in Clifford analysis
- On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
- Cauchy integral decomposition of multi-vector valued functions on hypersurfaces
- Jump problem and removable singularities for monogenic functions
- A matrix Hilbert transform in Hermitean Clifford analysis
- A boundary value problem for Hermitian monogenic functions
- The Hermitian Clifford analysis toolbox
- Analysis of Dirac systems and computational algebra.
- Minkowski dimension and Cauchy transform in Clifford analysis
- Fundaments of Hermitean Clifford analysis. I: Complex structure
- Cauchy transform on nonrectifiable surfaces in Clifford analysis
- Clifford Cauchy type integrals on Ahlfors-David regular surfaces in \(\mathbb R^{m+1}\)
- Complexified clifford analysis
- The Clifford–Cauchy transform with a continuous density: N. Davydov's theorem
- Hermitian Clifford analysis and resolutions
- A Martinelli–Bochner formula for the Hermitian Dirac equation
- Fundaments of Hermitean Clifford analysis part II: splitting ofh-monogenic equations