Congruences among modular forms on \(\text{U}(2,2)\) and the Bloch-Kato conjecture
From MaRDI portal
Publication:1010971
DOI10.5802/aif.2427zbMath1214.11055arXiv0710.2549OpenAlexW2963052879WikidataQ122904556 ScholiaQ122904556MaRDI QIDQ1010971
Publication date: 7 April 2009
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0710.2549
Other groups and their modular and automorphic forms (several variables) (11F55) Congruences for modular and (p)-adic modular forms (11F33) Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) Galois representations (11F80)
Related Items
Congruence primes for automorphic forms on unitary groups and applications to the arithmetic of Ikeda lifts ⋮ On deformation rings of residually reducible Galois representations and \(R = T\) theorems ⋮ On the action of the \(U_p\) operator on the local (at \(p\)) representation attached to congruence level Siegel modular forms ⋮ Hermitian Maass lift for general level ⋮ Yoshida lifts and the Bloch-Kato conjecture for the convolution \(L\)-function ⋮ On the Bloch-Kato conjecture for elliptic modular forms of square-free level ⋮ A note on Hecke eigenvalues of Hermitian Siegel Eisenstein series ⋮ SPECIAL VALUES OF L-FUNCTIONS ON GSp4 × GL2 AND THE NON-VANISHING OF SELMER GROUPS ⋮ Automorphic Forms on Feit’s Hermitian Lattices ⋮ On the Eisenstein ideal for imaginary quadratic fields ⋮ Modularity of residual Galois extensions and the Eisenstein ideal ⋮ CONGRUENCE PRIMES FOR SIEGEL MODULAR FORMS OF PARAMODULAR LEVEL AND APPLICATIONS TO THE BLOCH–KATO CONJECTURE ⋮ The Maass space for \(U(2,2)\) and the Bloch-Kato conjecture for the symmetric square motive of a modular form
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Maaß space on the Hermitian half-space of degree 2
- On certain types of \(p\)-adic representations of the Galois group of a local field; construction of a Barsott-Tate ring.
- Class fields of abelian extensions of \(\mathbb Q\)
- p-adic measures attached to automorphic representations of GL(3)
- On the local Hecke series of some classical groups over \(\mathfrak p\)-adic fields
- An arithmetic of Hermitian modular forms of degree two
- Confluent hypergeometric functions on tube domains
- On the functional equations satisfied by Eisenstein series
- A modular construction of unramified p-extensions of \(\mathbb{Q}(\mu_p)\)
- Modular curves and the Eisenstein ideal
- The Bloch-Kato conjecture on special values of \(L\)-functions. A survey of known results.
- Period ratios of modular forms.
- The Maass space for \(SU(2,2)\). Hecke rings and zeta-functions
- Selmer groups and the Eisenstein-Klingen ideal.
- Special values of anticyclotomic \(L\)-functions.
- Lectures on automorphic \(L\)-functions
- Modular elliptic curves and Fermat's Last Theorem
- Ring-theoretic properties of certain Hecke algebras
- Canonical periods and congruence formulae
- The Iwasawa conjecture for totally real fields
- Hermitian modular functions
- Hermitian modular functions. II: Genus invariants of Hermitian forms
- Hermitian modular functions. III. The hermitian modular group
- Symmetric Square L-Functions and Shafarevich-Tate Groups
- Saito–Kurokawa lifts and applications to the Bloch–Kato conjecture
- Le spectre résiduel de ${\rm GL}(n)$
- Special Values of Zeta Functions, and Eisenstein Series of Half Integral Weight
- Automorphic Forms on Adele Groups. (AM-83)
- The Tamagawa number conjecture of adjoint motives of modular forms
- [https://portal.mardi4nfdi.de/wiki/Publication:4676598 Formes non temp�r�es pour et conjectures de Bloch?Kato]
- A Dirichlet series for Hermitian modular forms of degree 2
- Euler Systems
- LISSITÉ DE LA COURBE DE HECKE DE $\mathrm{GL}_2$ AUX POINTS EISENSTEIN CRITIQUES